亚洲免费无码a集片_韩国精品无码一区二在线_精品亚洲成a人在线播放_日韩精品无码一本二本三本

主營(yíng)產(chǎn)品:生活廢水一體化設(shè)備、農(nóng)村一體化生活污水處理成套設(shè)備
  • 技術(shù)文章ARTICLE

    您當(dāng)前的位置:首頁 > 技術(shù)文章 > 如何去除養(yǎng)殖污水中的抗生素抗性基因

    如何去除養(yǎng)殖污水中的抗生素抗性基因

    發(fā)布時(shí)間: 2021-08-06  點(diǎn)擊次數(shù): 769次

    如何去除養(yǎng)殖污水中的抗生素抗性基因

    天津市眾邁環(huán)保設(shè)備科技有限公司位于環(huán)渤海地區(qū)的經(jīng)濟(jì)中心——天津。本公司是一家集研發(fā)、生產(chǎn)、銷售水處理設(shè)備、環(huán)保凈化設(shè)備于一體的綜合生產(chǎn)型企業(yè)。設(shè)備在銷往全國(guó)各地的同時(shí)也出口多個(gè)國(guó)家并得到客戶的*好評(píng)!

    公司主營(yíng)產(chǎn)品有:含油污染物超凈處理裝置、地埋式一體化污水處理設(shè)備、溶氣式氣浮機(jī)、醫(yī)用污水處理設(shè)備、板框壓濾機(jī)、二氧化氯發(fā)生器、飲用水消毒設(shè)備加藥裝置等各種環(huán)保產(chǎn)品。

    目前公司的污水處理設(shè)備在飲用水、市政污水、醫(yī)院污水、生活污水、機(jī)場(chǎng)污水、高速公路污水、景區(qū)污水、食品廠、工業(yè)循環(huán)冷卻水、中水回用等不同領(lǐng)域得到廣泛應(yīng)用。

    公司擁有一批優(yōu)秀的科研技術(shù)及管理專業(yè)人才,可以針對(duì)同不客戶的要求,提供不同的解決方案??梢韵蚩蛻籼峁﹥?yōu)質(zhì)的成品,也可以按照客戶的需求,定制*設(shè)備。本公司具有系統(tǒng)設(shè)計(jì),工程實(shí)施,售后服務(wù)等一站式服務(wù)。

    天津市眾邁環(huán)保設(shè)備科技有限公司本著“科技興企、人才興企"經(jīng)營(yíng)理念和“質(zhì)量為先、誠(chéng)信為本"的企業(yè)宗旨,服務(wù)于社會(huì),回報(bào)于社會(huì),盡心盡力做好環(huán)保事業(yè)。

    淀粉廢水特點(diǎn)及主要處理工藝

    淀粉廢水屬于高濃度有機(jī)廢水,常使用厭氧-好氧工藝進(jìn)行處理。

    1.淀粉廢水水質(zhì)來源及特點(diǎn)

    淀粉廢水是以玉米、馬鈴薯、小麥、大米以及其它富含淀粉的農(nóng)產(chǎn)品為原料,進(jìn)行淀粉加工或深加工(淀粉糖、葡萄糖、淀粉衍生物等)而產(chǎn)生的工業(yè)廢水,主要包括中間產(chǎn)品洗滌水、設(shè)備沖洗水、原料浸泡水等。其主要污染因子為COD、SS、氨氮和磷酸鹽。

    淀粉廢水的主要特點(diǎn)如下:

    有機(jī)物含量高,COD濃度一般8000mg/L以上;含較高的氮、磷營(yíng)養(yǎng)物;BOD與COD比值較高,可生化性好,較宜于生物處理;其廢水呈酸性。

    2.淀粉廢水主要處理工藝

    淀粉廢水屬生化性較好的高濃度有機(jī)廢水,因而常采用厭氧-好氧的聯(lián)合處理工藝。下圖為常用的淀粉廢水處理工藝,廢水經(jīng)過預(yù)處理、厭氧處理、好氧處理以及深度處理能夠達(dá)標(biāo)排放。

    a.預(yù)處理工序

    在預(yù)處理工序中,淀粉廢水通過格柵、沉淀、氣浮等工藝去除懸浮物,減少后續(xù)反應(yīng)器負(fù)荷。淀粉廢水呈酸性,產(chǎn)甲烷菌不能承受低pH值的環(huán)境,抑制厭氧處理過程,因此生化處理前需要調(diào)整pH值至中性(其適宜范圍是6.8~7.2)。

    b.厭氧生物處理

    厭氧生物處理是一種有效處理高濃度有機(jī)廢水的技術(shù),可將有機(jī)化合物轉(zhuǎn)化為低分子有機(jī)化合物,并能產(chǎn)生甲烷進(jìn)行回收利用,減少后續(xù)反應(yīng)負(fù)荷。厭氧處理技術(shù)可選用UASB、EGSB、IC等工藝,其COD去除率可達(dá)到80%以上。淀粉糖及變性淀粉生產(chǎn)廢水需投加營(yíng)養(yǎng)鹽調(diào)節(jié)碳氮比后再進(jìn)行厭氧生物反應(yīng)。

    c.好氧生物處理

    好氧生物處理是在有氧環(huán)境下對(duì)有機(jī)物的*分解,其工藝技術(shù)有SBR、氧化溝和二沉池等。

    畜禽養(yǎng)殖場(chǎng)作為抗生素抗性基因的一個(gè)熱點(diǎn)區(qū),其產(chǎn)生的廢水中存在大量的抗生素抗性基因,直接排放將會(huì)污染接受的水體.本研究以微生物固化曝氣技術(shù)為核心,構(gòu)建了一個(gè)包含沉淀池、一級(jí)處理池、二級(jí)處理池和氧化塘的養(yǎng)殖廢水處理系統(tǒng).采用高通量熒光定量PCR 技術(shù),探究各種抗性基因在進(jìn)水、各處理池和出水中的種類、多樣性和豐度的變化以及可能的影響因素.研究發(fā)現(xiàn): ( 1) 微生物固化曝氣技術(shù)能有效降低養(yǎng)殖廢水中抗性基因的種類和多樣性; ( 2) 該技術(shù)也能有效去除養(yǎng)殖廢水中抗性基因的豐度,去除率高達(dá)93.6%; ( 3) 養(yǎng)殖廢水出水中抗性基因豐度仍高于自然水體,其直接排放仍有抗性基因污染風(fēng)險(xiǎn); ( 4)畜禽養(yǎng)殖廢水中TN 和的含量與許多抗生素抗性基因總豐度存在正相關(guān)性.通過對(duì)TN 和的去除或者控制使用,可以有效降低養(yǎng)殖廢水中的抗性基因。

    抗生素在預(yù)防、治療微生物引起的疾病時(shí)具有良好的療效,同時(shí)還能促進(jìn)畜禽生長(zhǎng),所以被廣泛用于畜禽養(yǎng)殖場(chǎng)[1-2].然而大多數(shù)抗生素并不能被動(dòng)物腸道*吸收,大部分仍以母體或者相關(guān)代謝產(chǎn)物的形式排出體外[2-3].這些排出體外的抗生素會(huì)對(duì)環(huán)境中的微生物產(chǎn)生一個(gè)選擇壓力,誘導(dǎo)和選擇環(huán)境微生物產(chǎn)生耐藥性,增加環(huán)境中抗性基因的豐度和多樣性[4].此外,喂食了抗生素的動(dòng)物,其腸道內(nèi)抗性基因的豐度和多樣性均有所提高[5].動(dòng)物腸道內(nèi)的耐藥菌和抗性基因隨著動(dòng)物的排泄進(jìn)入環(huán)境中,直接增加了環(huán)境中抗性基因的豐度及多樣性。

    抗生素抗性基因是一種新型的環(huán)境污染物[3,6].?dāng)y帶抗生素抗性基因的微生物( 如致病菌等) 能對(duì)相應(yīng)的抗生素產(chǎn)生耐藥性,這使得抗生素在治療由致病菌引起的疾病時(shí)療效下降甚至無效,嚴(yán)重威脅人類健康[4,7].2011 年德國(guó)爆發(fā)“毒黃瓜"事件,在歐洲至少9 個(gè)國(guó)家蔓延,造成33 人死亡,超過3000 人受到感染,其中至少470 人出現(xiàn)腎功能衰竭并發(fā)癥,引起本次疫情的就是一種新型的高傳染性攜帶多種抗性基因的致病菌[4].在美國(guó)每年有超過200 萬人感染耐藥病原體,其中有14000 人死亡[6]。

    固化微生物污水凈化器( biocleaner) 是Bio Cleaner 公司研發(fā)的由微生物發(fā)生器與高效曝氣裝置組合的污水治理專用設(shè)備.對(duì)該裝置處理養(yǎng)殖廢水的研究結(jié)果表明: ( 1) 微生物固化曝氣技術(shù)能有效去除常規(guī)污染物,除TP 外,COD 和NH+4 -N 的出水濃度均能達(dá)到《畜禽養(yǎng)殖業(yè)污染物排放標(biāo)準(zhǔn)》( GB 18596—2001) ; ( 2) 該技術(shù)對(duì)抗生素的去除效果依抗生素的種類而變,對(duì)4 種四環(huán)素類抗生素的去除率高達(dá)85%以上; 對(duì)大環(huán)內(nèi)酯類中的的去除率為62.8%; 對(duì)大環(huán)內(nèi)酯類中的羅和類抗生素則基本無效[8]。

    本研究在之前研究[8]的基礎(chǔ)上,采用高通量熒光定量PCR 技術(shù),進(jìn)一步研究: ( 1) 養(yǎng)殖廢水中各種抗生素抗性基因在進(jìn)水、各處理池、出水中的分布與變化; ( 2) 固化曝氣技術(shù)對(duì)各種抗生素抗性基因的去除效果; ( 3) 各種抗性基因的去除效果與常規(guī)污染物和抗生素的去除是否有耦合關(guān)系。

    1 材料與方法( Materials and Methods)

    1.1 系統(tǒng)運(yùn)行

    處理系統(tǒng)采用美國(guó)Biocleaner 技術(shù),由沉淀池、一級(jí)處理池、二級(jí)處理池和氧化塘組成.各處理單元的尺寸( 長(zhǎng)×寬×高) 分別為: 沉淀池25 m×20 m×5 m、一級(jí)處理池25 m×20 m×2 m、二級(jí)處理池25 m×20 m×2 m 和氧化塘40 m×30 m×4 m[8].各處理單元用管道連接,按照高程由高到低,依次排列沉淀池、一級(jí)處理池、二級(jí)處理池和氧化塘,省去不同處理單元間依靠泵為動(dòng)力進(jìn)行的水力流動(dòng).該處理系統(tǒng)廢水來自于附近多個(gè)養(yǎng)殖場(chǎng)直排的清糞水,每日污水處理量為150—200 t.在一級(jí)處理和二級(jí)處理池中分別放置一個(gè)曝氣機(jī)和一個(gè)Biocleaner 設(shè)備,曝氣機(jī)功率為2.2 kV,采用人工開啟電閘控制,運(yùn)行時(shí)間為24 h·d-1 .Biocleaner 設(shè)備裝載微生物載體,無需人工維護(hù).系統(tǒng)自2013 年8 月試運(yùn)行,經(jīng)過12 個(gè)月調(diào)試,于2014 年8 月穩(wěn)定運(yùn)行.本研究以穩(wěn)定運(yùn)行監(jiān)測(cè)數(shù)據(jù)進(jìn)行分析。

    1.2 樣點(diǎn)布設(shè)與采樣點(diǎn)概況

    研究樣地位于龍巖市某養(yǎng)殖廢水處理示范點(diǎn).依據(jù)處理系統(tǒng)的運(yùn)行情況,于2014 年8 月,進(jìn)行1 次系統(tǒng)地采樣,采集12 個(gè)點(diǎn),其中進(jìn)水1 個(gè)( Ⅰ) ,沉淀池2 個(gè)( Ⅱ) ,一級(jí)處理池( Ⅲ) 、二級(jí)處理池( Ⅳ) 和氧化塘( Ⅴ) 各3 個(gè)( 圖1) .分析測(cè)試了12 個(gè)點(diǎn)的NH+4 -N、NO-3 -N、TN、TP、COD、TOC、9 種抗生素( 4 種四環(huán)素: 、四環(huán)素、、; 2 種大環(huán)內(nèi)酯類抗生素: 羅、; 3 種類抗生素: 、、) ,研究結(jié)果已經(jīng)發(fā)表[8].本研究選取進(jìn)水以及各處理單元出水樣品( Ⅰ-1、Ⅱ-2,Ⅲ-2、Ⅳ-3、Ⅴ-3) 進(jìn)行抗生素抗性基因分析。

    1.3 DNA 提取

    根據(jù)水樣的渾濁程度,量取一定體積的水樣倒入50 mL 離心管中,12000 r·min-1轉(zhuǎn)速離心10 min,倒掉上清液,在每個(gè)離心管中加入1 mL 生理鹽水,將底部的沉淀充分混勻.再將樣品全部轉(zhuǎn)移至新的1.5 mL離心管中,18000 r·min-1離心5 min 后,倒掉上清液.若所得固體沉淀樣品過少,則重復(fù)上述操作,直到所得樣品約為0. 5 g.然后加入978 μL PBS 緩沖液( FastDNA  SPIN kit for Soil 試劑盒,MPBiomedical,美國(guó)) ,并全部轉(zhuǎn)移到試劑盒中的Lysing Matrix E 管,按試劑盒提供的操作說明進(jìn)行提?。唧w步驟如下: 加入122 μL MT Buffer,在FastPrep  儀器中進(jìn)行振蕩破碎均質(zhì)化( 時(shí)間30 s,速度6.0 m·s-1 ) ,然后對(duì)Lysing Matrix E 管進(jìn)行離心處理( 14000 r·min-1,15 min) .將上清液轉(zhuǎn)移到一個(gè)新的2 mL離心管中,加入250 μL PPS,并用手搖10 次進(jìn)行混合.對(duì)樣品再一次進(jìn)行離心( 14000 r·min-1,5 min) ,將上清液轉(zhuǎn)移到一個(gè)新的2 mL 離心管中,并加入1 mL Binding Matrix Suspension,用手上下顛倒2 min,使DNA 附著到基質(zhì)上,靜置約3 min.去除約500 μL 上清,分多次將Binding Matrix 全部轉(zhuǎn)移到SPINTM Filter 中,加入500 μL SEWS-M 到SPINTM Filter 中對(duì)Binding Matrix 進(jìn)行清洗,通過離心去除SEWS-M,在室溫下風(fēng)干SPINTM Filter 5 min.后加入70 μL DES 溶液進(jìn)行DNA 洗脫。

    1.4 高通量熒光定量PCR

    本實(shí)驗(yàn)采用SmartChip Real-time PCR Systems( WaferGen 公司,美國(guó)) 的高通量熒光定量的反應(yīng)平臺(tái)[9-11].總共使用了296 對(duì)引物,由于一個(gè)基因有多個(gè)引物,因此共有214 對(duì)抗性基因的引物( 基本上覆蓋目前所有的抗性基因種類) ,5 對(duì)可移動(dòng)原件基因引物和1 對(duì)16S rRNA 基因引物.

    反應(yīng)體系和反應(yīng)程序與Ouyang 等[11]和黃福義等[12]的一致.采用100 nL 反應(yīng)體系,各試劑濃度為:LightCycler 480 SYBR Green Ⅰ Master Mix 1×,DNA 濃度5 ng·μL-1,BSA 濃度1 ng·μL-1和1 μmol·L-1引物.反應(yīng)程序?yàn)椋?95 ℃預(yù)變性10 min,95 ℃變性30 s,60 ℃退火延伸30 s,40 個(gè)循環(huán); 程序自動(dòng)升溫進(jìn)行溶解曲線分析.

    定量PCR 數(shù)據(jù)處理參照文獻(xiàn)進(jìn)行[11,13],以CT值31 作為儀器的檢測(cè)閾值.每個(gè)樣品進(jìn)行3 次技術(shù)重復(fù),只有當(dāng)每個(gè)樣品中3 個(gè)重復(fù)同時(shí)檢測(cè)出時(shí),才認(rèn)為目的基因被有效檢出.抗性基因相對(duì)拷貝數(shù)的計(jì)算參照公式( 1) 和( 2) [5,11,13],然后通過16S rRNA 拷貝數(shù)與抗性基因相對(duì)拷貝數(shù)計(jì)算出抗性基因的拷貝數(shù)( 公式3) .

    基因拷貝數(shù)= 10( ( 31-CT) /( 10/3) ) ( 1)

    抗性基因相對(duì)拷貝數(shù)( 相對(duì)豐度) = 抗性基因拷貝數(shù)/16S rRNA 基因拷貝數(shù)( 2)

    抗性基因豐度=抗性基因相對(duì)拷貝數(shù)×16S rRNA 基因的拷貝數(shù)( 3)

    1.5 16S rRNA 定量

    采用Roche 480 定量PCR 儀測(cè)定樣品中的16S rRNA 基因,并采用標(biāo)準(zhǔn)質(zhì)粒外標(biāo)法對(duì)其豐度進(jìn)行定量[11].標(biāo)準(zhǔn)質(zhì)粒原始濃度為1.39×109 copies·μL-1,標(biāo)準(zhǔn)曲線( 10 倍稀釋) 的范圍為1.39×103—1.39×109 copies·μL-1 .使用20 μL 反應(yīng)體系: 10 μL 2×LightCycler 480 SYBR Green Ⅰ Master Mix,上下游引物各1 μL,1 μL DNA 模板和7 μL 無菌水.反應(yīng)運(yùn)行程序?yàn)椋?95 ℃預(yù)變性5 min,40 個(gè)循環(huán)( 95 ℃變性15 s,60 ℃退火1 min,72 ℃延伸15 s) ,儀器自動(dòng)添加溶解曲線程序.用滅菌超純水代替樣品進(jìn)行陰性對(duì)照,每個(gè)樣品均做3 次重復(fù).

    1.6 數(shù)據(jù)處理與分析

    平均值以及標(biāo)準(zhǔn)差使用Excel 2007 版本進(jìn)行計(jì)算; 顯著性分析和Pearson 相關(guān)分析使用SPSS 17.0版本進(jìn)行分析; 在計(jì)算檢測(cè)到的基因數(shù)量時(shí),由于一個(gè)基因有多個(gè)引物,如果有多對(duì)引物檢測(cè)出同一個(gè)基因,在計(jì)算時(shí)只算檢出一個(gè).

    2 結(jié)果與討論( Results and Discussion)

    2.1 抗性基因多樣性

    在整個(gè)處理系統(tǒng)中,所有水樣中共檢出123 種抗性基因和5 種可移動(dòng)遺傳元件.進(jìn)水中檢測(cè)出111 種抗性基因和可移動(dòng)遺傳元件( MGES) ,沉淀池、一級(jí)處理池中均檢測(cè)出115 種,二級(jí)處理池和出水中分別檢測(cè)出108 種和95 種,比進(jìn)水( 111 種) 略有降低( 圖2) .此外,二級(jí)處理池和出水的Shannon 和Inverse Simpson 指數(shù)也均低于進(jìn)水( 表1) .這說明微生物固化曝氣技術(shù)能降低養(yǎng)殖廢水中抗性基因的多樣性.該出水是直接排入九龍江流域的.在九龍江流域城市河段的2 個(gè)水樣中,檢測(cè)出的抗性基因數(shù)量分別為131 和161 種[11].本研究中畜禽養(yǎng)殖廢水出水中所檢測(cè)到的抗性基因種類較少,為90 個(gè).這說明九龍江流域中抗性基因的來源不僅有畜禽養(yǎng)殖廢水這一種途徑,應(yīng)該還有來自于城市污水處理廠這一途徑。

    根據(jù)抗性基因?qū)股氐目剐詸C(jī)制,可將檢測(cè)到的抗性基因分為抗生素失活( antibiotic deactivate) 、抗生素外排( efflux pump) 、細(xì)胞核糖體保護(hù)( cellular protection) 和其他( unknown) 4 種類型.抗生素失活機(jī)制的抗性基因,在各種樣品中占46.67% — 50.91%( 表2) .黃福義等[12]研究施用豬糞的水稻土以及Ouyang 等[11]研究九龍江流域的水體時(shí),也發(fā)現(xiàn)抗生素失活機(jī)制的抗性基因所占比例大,分別為:42.59%和49.06%.這說明攜帶抗生素失活機(jī)制基因的微生物是各種環(huán)境介質(zhì)中常見的種類.抗生素外排機(jī)制的抗性基因,其檢出種類僅次于抗生素失活機(jī)制的抗性基因,從進(jìn)水的30.19%到出水的32.22%.?dāng)y帶抗生素外排抗性基因的細(xì)菌,不僅可以將抗生素排出細(xì)胞外,還能將重金屬和其它有毒分子等排出體外[14].這使得攜帶抗生素外排泵抗性基因的微生物能更好地適應(yīng)環(huán)境.

    從抗性基因所對(duì)應(yīng)的抗生素類型來看,所檢測(cè)出的抗性基因覆蓋了所劃分的9 種類型: 氨基糖苷類抗性基因( aminoglycoside) 、β-內(nèi)酰胺類抗性基因( beta-lactamase) 、類抗性基因( chloramphenicol) 、大環(huán)內(nèi)酯類林肯酰胺類鏈陽性菌素B 抗性基因( MLSB) 、多重耐藥基因( multidrug) 、磺胺類抗性基因( sulfonae) 、四環(huán)素類抗性基因( tetracycline) 、抗性基因( vancomycin) 以及其它類型抗性基因( others) .隨著污水處理的不斷深入,9 種類型的抗性基因數(shù)量在各個(gè)處理池間無明顯差異,在各處理池間所占比例分別為: 17.78%—19.42%、14.15%—17.78%、1.82%—2.22%、12.22%—17.92%、19.81%—21.11%、1.82%—2.22%、12.26%—14.44%、3.64%—5.66%和7.27%—8.18%( 表2) .相對(duì)而言,多重耐藥基因檢出種類在各處理單元中所占比例大.多重耐藥基因會(huì)使攜帶其的微生物對(duì)多種抗生素具有耐藥性,進(jìn)而有可能使微生物成為“超級(jí)細(xì)菌".本研究說明該畜禽養(yǎng)殖廢水對(duì)人類健康有“超級(jí)細(xì)菌"的潛在威脅。

    2.2 抗性基因豐度

    經(jīng)微生物固化曝氣技術(shù)處理后,養(yǎng)殖廢水中抗性基因豐度顯著減少( 圖3) .進(jìn)水中抗性基因的豐度為3.8×1010 copies·mL-1,而出水中為2.4×109 copies·mL-1,去除率達(dá)93.6%.沉淀池、一級(jí)處理池、二級(jí)處理池和氧化塘對(duì)抗性基因的去除貢獻(xiàn)不一樣: 沉淀池中抗性基因豐度為3. 1 ×1010 copies·mL-1,去除率為18.0%; 一級(jí)處理池中抗性基因豐度為6.6×109 copies·mL-1,去除率為64.7%; 二級(jí)處理池中抗性基因豐度為3.2×109 copies·mL-1,去除率為9.0%; 氧化塘中抗性基因豐度為2.4×109 copies·mL-1,去除率為1.9%.一級(jí)處理池對(duì)抗性基因去除貢獻(xiàn)大,為64.7%.

    抗性基因的相對(duì)豐度在各處理池間并沒有顯著區(qū)別( 圖4) ,進(jìn)水為2.37,出水為3.14.這意味著抗性基因豐度的減少是由于廢水中16S rRNA 豐度( 或者說微生物數(shù)量) 減少所引起的,而不是該處理系統(tǒng)能選擇性去除抗生素抗性基因.此外,相對(duì)于進(jìn)水,出水中抗性基因豐度雖然減少了很多,但仍比自然水體高出不少.Ouyang 等[11]研究發(fā)現(xiàn)九龍江流經(jīng)城市的河段水體中抗性基因的豐度為9.7×107—1.0×108 copies·mL-1,發(fā)源地河段水體中抗性基因的豐度為7.2×105 copies·mL-1 .這表明經(jīng)微生物固化曝氣技術(shù)處理后,養(yǎng)殖廢水中抗生素抗性基因仍有可能對(duì)排放的水體產(chǎn)生污染.

    隨著養(yǎng)殖廢水的不斷處理,不同抗性機(jī)制抗性基因的豐度比例也在發(fā)生變化( 表3) .?dāng)y帶抗生素失活的抗性基因在各處理池之間無顯著變化,進(jìn)水中為43.2%,出水中為40.4%; 攜帶細(xì)胞核糖體保護(hù)的抗性基因在逐步降低,在進(jìn)水、沉淀池、一級(jí)處理池、二級(jí)處理池和出水中依次為23.5%、15.6%、6.2%、2.4%和5.3%; 攜帶外排泵機(jī)制的抗性基因在逐步增加,在進(jìn)水、沉淀池、一級(jí)處理池、二級(jí)處理池和出水中依次為33.3%、35.6%、48.5%、58.4%和54.2%.這進(jìn)一步說明,攜帶外排泵機(jī)制的抗性基因的微生物相對(duì)于攜帶其它抗性機(jī)制的基因的微生物來說,具有更好的環(huán)境適應(yīng)性.

    從抗性基因所對(duì)應(yīng)的抗生素類型來看( 表3) : ( 1) 氨基糖苷類抗性基因和四環(huán)素類抗性基因在各處理單元中均穩(wěn)定地占有較高的比例( 分別為30.4%—40.3%和25.1%—29.9%) ; ( 2) 多重耐藥基因雖然檢出種類多,但是它們的豐度在進(jìn)水中并不是多的.然而,隨著養(yǎng)殖廢水的不斷處理,其所占比例逐步增加,在進(jìn)水、沉淀池和一級(jí)處理池中依次為: 19.2%、22.5%和26.5%,并在二級(jí)處理池( 34.0%)和出水( 32.8%) 中超過氨基糖苷類成為污水中豐度高的抗性基因; ( 3) 雖然大環(huán)內(nèi)酯類林肯酰胺類鏈陽性菌素B 抗性基因及β-內(nèi)酰胺類抗性基因在各處理池中檢出的數(shù)量不少( 表1) ,但是豐度所占的比例卻很少( 表3) ; ( 4) 在整個(gè)處理系統(tǒng)中,抗性基因豐度所占的比例小,在0.01%—0.02%之間,這應(yīng)該是由于抗生素僅用于人類疾病治療[11],而生豬養(yǎng)殖行業(yè)不使用.

    2.3 抗性基因與常規(guī)污染物、抗生素相關(guān)性分析

    Forsberg 等[15]研究發(fā)現(xiàn)微生物群落組成是土壤抗性基因含量的主要決定因素; Su 等[9]同樣發(fā)現(xiàn)抗性基因與微生物群落結(jié)構(gòu)顯著相關(guān).氮、磷等常規(guī)污染物,作為微生物生長(zhǎng)繁殖的必要營(yíng)養(yǎng)物質(zhì),可以通過影響微生物的生長(zhǎng),進(jìn)而影響抗性基因的豐度.將常規(guī)污染物濃度[8]與不同抗性機(jī)制抗性基因和不同抗生素種類抗性基因的豐度進(jìn)行相關(guān)性分析( 表4) 發(fā)現(xiàn),TN 與外排泵機(jī)制抗性基因、磺胺類抗性基因、四環(huán)素類抗性基因和總抗性基因的豐度呈顯著正相關(guān)( P<0.05) ,這說明攜帶這幾類抗性基因的微生物的生長(zhǎng)和繁殖受環(huán)境中總氮水平的制約.

    抗生素濫用被認(rèn)為是導(dǎo)致環(huán)境中抗生素抗性基因急劇增加的主要因素.Looft 等[5]研究發(fā)現(xiàn),抗生素的使用能提高豬腸道內(nèi)抗生素抗性基因的豐度及多樣性; 梁惜梅等[16]也發(fā)現(xiàn),珠江口水產(chǎn)養(yǎng)殖區(qū)沉積物中抗生素總濃度與ARGs 總含量顯著相關(guān); Wu 等[17]研究發(fā)現(xiàn)四環(huán)素類抗生素殘余與四環(huán)素類抗性基因豐度之間存在顯著相關(guān).研究發(fā)現(xiàn)濃度與多種抗性基因( 類抗性基因、大環(huán)內(nèi)酯類林肯酰胺類鏈陽性菌素B 抗性基因、四環(huán)素類抗性基因、細(xì)胞核糖體保護(hù)機(jī)制抗性基因、抗生素外排泵機(jī)制抗性基因和總抗性基因) 的豐度均存在顯著正相關(guān)( 表4) ; 四環(huán)素濃度除與β-內(nèi)酰胺類抗性基因的豐度存在相關(guān)性外,與其它抗性基因間并無顯著相關(guān).這表明抗生素對(duì)抗性基因的影響因抗生素種類而異.養(yǎng)殖廢水中殘留可能是影響?zhàn)B殖廢水中抗性基因豐度的重要原因,因此可以通過控制在養(yǎng)殖場(chǎng)中的使用,有效降低養(yǎng)殖廢水中抗性基因的豐度.


    3 結(jié)論( Conclusion)


    ( 1) 微生物固化曝氣技術(shù)能有效降低養(yǎng)殖廢水中抗性基因的種類和多樣性.


    ( 2) 該技術(shù)也能有效去除養(yǎng)殖廢水中的抗生素抗性基因,去除率高達(dá)93.6%.沉淀池、一級(jí)處理池、二級(jí)處理池和氧化塘對(duì)抗性基因的去除貢獻(xiàn)分別為18.0%、64.7%、9.0%和1.9%.其中,一級(jí)處理池對(duì)抗性基因去除貢獻(xiàn)大.


    ( 3) 養(yǎng)殖廢水出水中抗性基因豐度仍高于自然水體,其直接排放仍有抗性基因污染風(fēng)險(xiǎn).


    ( 4) 畜禽養(yǎng)殖廢水中TN 和的含量與許多抗生素抗性基因總豐度存在正相關(guān)性.通過對(duì)這兩種物質(zhì)的去除或者控制使用,可能是降低養(yǎng)殖廢水中抗性基因豐度的一種有效途徑.

    637450200564893120363.jpg

    637350686822325113593.jpg


產(chǎn)品中心 Products